\(\int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\) [214]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 270 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {16 a^2 (3 A+2 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {16 a^2 (3 A+2 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d} \]

[Out]

4/21*a^2*(7*A+5*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/105*a^2*(21*A+19*C)*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/9*C*sec
(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*sin(d*x+c)/d+8/63*C*sec(d*x+c)^(5/2)*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d+16/15*
a^2*(3*A+2*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-16/15*a^2*(3*A+2*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c
)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/21*a^2*(7*A+5*C)*(cos(1/2*d*x+1/
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {4174, 4103, 4082, 3872, 3853, 3856, 2719, 2720} \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 a^2 (21 A+19 C) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{105 d}+\frac {4 a^2 (7 A+5 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{21 d}+\frac {16 a^2 (3 A+2 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (7 A+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {16 a^2 (3 A+2 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {8 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{63 d}+\frac {2 C \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^2}{9 d} \]

[In]

Int[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(-16*a^2*(3*A + 2*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (4*a^2*(7*A + 5
*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (16*a^2*(3*A + 2*C)*Sqrt[Sec[c +
 d*x]]*Sin[c + d*x])/(15*d) + (4*a^2*(7*A + 5*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(21*d) + (2*a^2*(21*A + 19*C
)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(105*d) + (2*C*Sec[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(9*d
) + (8*C*Sec[c + d*x]^(5/2)*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(63*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4082

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Dist[1/(n + 1), Int[(d
*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e,
 f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4174

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1
))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n +
 a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(
-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {2 \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (\frac {3}{2} a (3 A+C)+2 a C \sec (c+d x)\right ) \, dx}{9 a} \\ & = \frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {4 \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) \left (\frac {3}{4} a^2 (21 A+11 C)+\frac {3}{4} a^2 (21 A+19 C) \sec (c+d x)\right ) \, dx}{63 a} \\ & = \frac {2 a^2 (21 A+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {8 \int \sec ^{\frac {3}{2}}(c+d x) \left (21 a^3 (3 A+2 C)+\frac {45}{4} a^3 (7 A+5 C) \sec (c+d x)\right ) \, dx}{315 a} \\ & = \frac {2 a^2 (21 A+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}+\frac {1}{15} \left (8 a^2 (3 A+2 C)\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx+\frac {1}{7} \left (2 a^2 (7 A+5 C)\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {16 a^2 (3 A+2 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}-\frac {1}{15} \left (8 a^2 (3 A+2 C)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{21} \left (2 a^2 (7 A+5 C)\right ) \int \sqrt {\sec (c+d x)} \, dx \\ & = \frac {16 a^2 (3 A+2 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d}-\frac {1}{15} \left (8 a^2 (3 A+2 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (2 a^2 (7 A+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {16 a^2 (3 A+2 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{15 d}+\frac {4 a^2 (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {16 a^2 (3 A+2 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d}+\frac {4 a^2 (7 A+5 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+19 C) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \sec ^{\frac {5}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{63 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.40 (sec) , antiderivative size = 821, normalized size of antiderivative = 3.04 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4(c+d x) \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{15 d (A+2 C+A \cos (2 c+2 d x))}+\frac {8 \sqrt {2} C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4(c+d x) \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{45 d (A+2 C+A \cos (2 c+2 d x))}+\frac {2 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{3 d (A+2 C+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)}+\frac {10 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right )}{21 d (A+2 C+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)}+\frac {\sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (\frac {8 (3 A+2 C) \cos (d x) \csc (c)}{15 d}+\frac {C \sec (c) \sec ^4(c+d x) \sin (d x)}{9 d}+\frac {\sec (c) \sec ^3(c+d x) (7 C \sin (c)+18 C \sin (d x))}{63 d}+\frac {\sec (c) \sec ^2(c+d x) (90 C \sin (c)+63 A \sin (d x)+112 C \sin (d x))}{315 d}+\frac {\sec (c) \sec (c+d x) (63 A \sin (c)+112 C \sin (c)+210 A \sin (d x)+150 C \sin (d x))}{315 d}+\frac {2 (7 A+5 C) \tan (c)}{21 d}\right )}{(A+2 C+A \cos (2 c+2 d x)) \sec ^{\frac {7}{2}}(c+d x)} \]

[In]

Integrate[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(4*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c + d*x]^4*Csc[
c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((
2*I)*(c + d*x))])*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/(15*d*E^(I*d*x)*(A + 2*C
 + A*Cos[2*c + 2*d*x])) + (8*Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c +
d*x))]*Cos[c + d*x]^4*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometr
ic2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)
)/(45*d*E^(I*d*x)*(A + 2*C + A*Cos[2*c + 2*d*x])) + (2*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sec[c/2
+ (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(
7/2)) + (10*C*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*
Sec[c + d*x]^2))/(21*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(7/2)) + (Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c
 + d*x])^2*(A + C*Sec[c + d*x]^2)*((8*(3*A + 2*C)*Cos[d*x]*Csc[c])/(15*d) + (C*Sec[c]*Sec[c + d*x]^4*Sin[d*x])
/(9*d) + (Sec[c]*Sec[c + d*x]^3*(7*C*Sin[c] + 18*C*Sin[d*x]))/(63*d) + (Sec[c]*Sec[c + d*x]^2*(90*C*Sin[c] + 6
3*A*Sin[d*x] + 112*C*Sin[d*x]))/(315*d) + (Sec[c]*Sec[c + d*x]*(63*A*Sin[c] + 112*C*Sin[c] + 210*A*Sin[d*x] +
150*C*Sin[d*x]))/(315*d) + (2*(7*A + 5*C)*Tan[c])/(21*d)))/((A + 2*C + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(7/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1140\) vs. \(2(290)=580\).

Time = 4.93 (sec) , antiderivative size = 1141, normalized size of antiderivative = 4.23

method result size
default \(\text {Expression too large to display}\) \(1141\)
parts \(\text {Expression too large to display}\) \(1403\)

[In]

int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*A*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
)))+4*C*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1
/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^
2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^
2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+2*C*(-1/144*cos(1/2*d*x+1/2*c
)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^5-7/180*cos(1/2*d*x+1/2*c)*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-14/15*sin(1/2*d*x+1/2*c)^2*co
s(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/
2*c),2^(1/2))-7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin
(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))+8/5*(1
/4*A+1/4*C)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24
*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^
2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2
))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/
(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.03 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 84 i \, \sqrt {2} {\left (3 \, A + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 84 i \, \sqrt {2} {\left (3 \, A + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (168 \, {\left (3 \, A + 2 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} + 30 \, {\left (7 \, A + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 7 \, {\left (9 \, A + 16 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 90 \, C a^{2} \cos \left (d x + c\right ) + 35 \, C a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{315 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-2/315*(15*I*sqrt(2)*(7*A + 5*C)*a^2*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))
- 15*I*sqrt(2)*(7*A + 5*C)*a^2*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 84*I
*sqrt(2)*(3*A + 2*C)*a^2*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin
(d*x + c))) - 84*I*sqrt(2)*(3*A + 2*C)*a^2*cos(d*x + c)^4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co
s(d*x + c) - I*sin(d*x + c))) - (168*(3*A + 2*C)*a^2*cos(d*x + c)^4 + 30*(7*A + 5*C)*a^2*cos(d*x + c)^3 + 7*(9
*A + 16*C)*a^2*cos(d*x + c)^2 + 90*C*a^2*cos(d*x + c) + 35*C*a^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x
+ c)^4)

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2),x)

[Out]

int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2), x)